NVIDIA GPU 架构与产品线对应表
架构代号 (科学家) | 发布年份 | 消费级(GeForce GTX(gaming)/RTX(AI with tensor core)) | 专业图形(Quadro / RTX A) | 数据中心(Tesla / A/H/B) | 边缘AI(Jetson) |
---|---|---|---|---|---|
Fermi | 2010 | GTX 480 | Quadro 6000 | Tesla M2090 | — |
Kepler | 2012 | GTX 680 | Quadro K6000 | Tesla K80 | Tegra K1 |
Maxwell | 2014 | GTX 980 | Quadro M6000 | — | Jetson Nano |
Pascal | 2016 | GTX 1080 | Quadro P6000 | Tesla P100 | Jetson TX2 |
Volta | 2017 | — | — | Tesla V100 | Jetson Xavier |
Turing | 2018 | RTX 2080 Ti | Quadro RTX 8000 | T4 | — |
Ampere | 2020 | RTX 3080 / 3090 | RTX A6000 | A100 | Jetson Orin 系列 |
Ada Lovelace | 2022 | RTX 4090 | RTX 6000 Ada | — | — |
Hopper Grace Hopper,编译器先驱(女性计算机科学家) | 2022 | — | — | H100 | — |
Blackwell David Blackwell,概率论与统计学家(非裔数学家) | 2024 | — | — | B100 / GB200 | — |
S - HW:SoC GPU
- Discrete GPU(独立显卡) 独立于 CPU 的 GPU,通常是单独的芯片
- SoC GPU(集成显卡)集成在 SoC中的 GPU
- System on Chip: one chip has the system of CPU, GPU, and others.
T - Jetson devices (Jetson Orion Nano Developer Kit)
Device | Jetson modules | Jetson developer kits |
---|---|---|
HW | Include CPU, GPU, memory, and limited storage, but ship without a carrier board or pre-installed software - attach it to a carrier board designed or procured for your end product - flash it with the software image you have developed |
includes a non-production-specification Jetson module attached to a reference carrier board |
SW | ships with no software preinstalled | with NVIDIA JetPack SDK |
Usecase | suitable for deployment in a production environment | not intended for production use, to develop and test only |
Product | Jetson Orin Nano module | Jetson Orion Nano Developer Kit |
A
https://developer.nvidia.com/buy-jetson?product=all&location=CN
S - SW:Linux + CUDA
T - Jetson software (L4T, jetpack SDK)
Jetson Linux/L4T/Linux for Tegra
- Version
- 36.4.3 via cat /etc/os-release
- nvcr.io/nvidia/l4t-base:r36.2.0
- Include
- Driver Package/Board Support Package (BSP)
- includes Linux Kernel, UEFI bootloader, NVIDIA drivers, flashing utilities, sample filesystem based on Ubuntu, and Ubuntu desktop environment for the Jetson platform
- https://developer.nvidia.com/downloads/embedded/l4t/r36_release_v4.3/release/Jetson_Linux_r36.4.3_aarch64.tbz2
- Sample Root Filesystem
- Driver Package/Board Support Package (BSP)
- Issue
- Issue - Can’t flash Orin Nano 4GB (might be timeout in USB write) at https://forums.developer.nvidia.com/t/cant-flash-orin-nano-4gb-might-be-timeout-in-usb-write/259575
- RC - .config file has issue at https://forums.developer.nvidia.com/t/orin-nano-8gb-no-display/259589/14
- Solution - changes to our .config file
- 35.3.1 released at Mar 2023
- Solution at Jul 18 ‘23
- 36.4.3 released at Jan 2025
- ALWAYS use latest available release
Jetpack SDK
- Version
- JetPack 6.2 via apt-show cache nvidia-jetpack
- nvcr.io/nvidia/l4t-jetpack:r36.4.0
- nvcr.io/nvidia/l4t-cuda:12.6.11-runtime cuda only
- Include
- Jetson Linux:36.4.3 via cat /etc/os-release
- Jetson AI Stack: CUDA 12.6.10 via nvcc -V
- Jetson Platform Services
Jetson Stats
- a package for monitoring and controlling your NVIDIA Jetson [Orin, Xavier, Nano, TX] series
- Issue
- Issue - Unable to run jtop on jetson Orin Nano at https://forums.developer.nvidia.com/t/unable-to-run-jtop-on-jetson-orin-nano/276970/2
- Solution - use tegrastats
A
1.Install Jetson Linux
# 1. Download the latest Jetson Linux release package and sample file system for your Jetson developer kit
# Jetson Linux release package
${L4T_RELEASE_PACKAGE} = Jetson_Linux_<version>_aarch64.tbz2
# Sample file system package
${SAMPLE_FS_PACKAGE} = Tegra_Linux_Sample-Root-Filesystem_<version>_aarch64.tbz2
# 2. Untar the files and assemble the rootfs
tar xf ${L4T_RELEASE_PACKAGE}
tar xpf ${SAMPLE_FS_PACKAGE} -C Linux_for_Tegra/rootfs/
cd Linux_for_Tegra/
./tools/l4t_flash_prerequisites.sh
./apply_binaries.sh
# 3. Put your Jetson developer kit into Force Recovery Mode
# Disconnect the power cable to ensure that the developer kit is powered off.
# Place a jumper to short the REC and GND pins on the 12-pin button header.
# Reconnect the power cable.
# Nvidia APX
# 4. Install/flash the Jetson release onto the Jetson developer kit
# jetson-orin-nano-devkit.conf is the .config file
./tools/kernel_flash/l4t_initrd_flash.sh --external-device nvme0n1p1 \
-c tools/kernel_flash/flash_l4t_t234_nvme.xml -p "-c bootloader/generic/cfg/flash_t234_qspi.xml" \
--showlogs --network usb0 jetson-orin-nano-devkit internal
# 5. Kit will auto reboot to Linux, remove the jumper
2.Config Jetson Linux
# 1. bluetooth
systemctl start bluetooth
systemctl enable bluetooth
bluetoothctl
> discoverable on
> scan on
> pair MAC
# 2. Install broswer
snap install chromium
3.Install JetPack
apt update
apt install nvidia-jetpack
vim /etc/bash.bashrc
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export CUDA_ROOT=/usr/local/cuda
4.Install Jetson Stats
apt-get install python3-pip
pip3 install -U pip
pip3 install -U jetson-stats
systemctl restart jtop.service
systemctl enable jtop.service
jtop
S - PyTorch
T - PyTorch for Jetson Platform
- Version
- 2.0
- nvcr.io/nvidia/l4t-pytorch:r35.2.1-pth2.0-py3
A
# 1. Install system packages required by PyTorch
apt-get -y update
apt-get install -y python3-pip libopenblas-dev
# 2. 24.06 PyTorch or later versions, cusparselt needs to be installed first
wget raw.githubusercontent.com/pytorch/pytorch/5c6af2b583709f6176898c017424dc9981023c28/.ci/docker/common/install_cusparselt.sh
export CUDA_VERSION=12.1 # as an example
bash ./install_cusparselt.sh
# 3.install PyTorch
export TORCH_INSTALL=https://developer.download.nvidia.cn/compute/redist/jp/v61/pytorch/torch-2.5.0a0+872d972e41.nv24.08.17622132-cp310-cp310-linux_aarch64.whl
# Specific version: https://developer.download.nvidia.com/compute/redist/jp/v$JP_VERSION/pytorch/$PYT_VERSION
# JP_VERSION: The major and minor version of JetPack you are using, such as 461 for JetPack 4.6.1 or 50 for JetPack 5.0.
python3 -m pip install numpy=='1.26.1'
python3 -m pip install --no-cache $TORCH_INSTALL
# Attempting uninstall: sympy
# Found existing installation: sympy 1.9
# ━━━━━━━━━━╺━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 2/8 [sympy]error: uninstall-distutils-installed-package
# × Cannot uninstall sympy 1.9
# ╰─> It is a distutils installed project and thus we cannot accurately determine which files belong to it which would lead to only a partial uninstall.
--ignore-installed
# 4. Test Torch
import torch
# ImportError: libcusparseLt.so.0: cannot open shared object file: No such file or directory
# Install libcusparseLt: https://discuss.pytorch.org/t/importerror-libcusparselt-so-0-cannot-open-shared-object-file-no-such-file-or-directory/190061/2
pytorch.cuda.is_available()